Electron Acceleration at a Low-mach-number Perpendicular Collisionless Shock
نویسندگان
چکیده
A full particle simulation study is carried out on the electron acceleration at a collisionless, relatively low Alfven Mach number (MA = 5), perpendicular shock. Recent self-consistent hybrid shock simulations have demonstrated that the shock front of perpendicular shocks has a dynamic rippled character along the shock surface of low-Mach-number perpendicular shocks. In this paper, the effect of the rippling of perpendicular shocks on the electron acceleration is examined by means of large-scale (ion-scale) two-dimensional full particle simulations. It has been shown that a large-amplitude electric field is excited at the shock front in association with the ion-scale rippling, and that reflected ions are accelerated upstream at a localized region where the shock-normal electric field of the rippled structure is polarized upstream. The current-driven instability caused by the highly-accelerated reflected ions has a high growth rate to large-amplitude electrostatic waves. Energetic electrons are then generated by the large-amplitude electrostatic waves via electron surfing acceleration at the leading edge of the shock transition region. The present result suggests that the electron surfing acceleration is also a common feature at low-Mach-number perpendicular collisionless shocks. Subject headings: acceleration of particles — plasmas — shock waves —
منابع مشابه
Two-dimensional Full Particle Simulation of a Perpendicular Collisionless Shock with a Shock-rest-frame Model
A two-dimensional (2D) shock-rest-frame model for particle simulations is developed. Then full kinetic dynamics of a perpendicular collisionless shock is examined by means of a 2D full particle simulation. We found that in the 2D simulation there are fewer nonthermal electrons due to surfing acceleration which was seen in the previous 1D simulations of a high Mach number perpendicular shock in ...
متن کاملTwo-dimensional Full Particle Simulation of Perpendicular Collisionless Shock with a Shock-rest-frame Model
A two-dimensional (2D) shock-rest-frame model for particle simulations is developed. Then full kinetic dynamics of a perpendicular collisionless shock is examined by means of a 2D full particle simulation. We found that in the 2D simulation there is less non-thermal electrons due to surfing acceleration which was seen in the previous 1D simulations of a high-Mach-number perpendicular shock in a...
متن کاملSimulations of Electron Acceleration at Collisionless Shocks: The Effects of Surface Fluctuations
Energetic electrons are a common feature of interplanetary shocks and planetary bow shocks, and they are invoked as a key component of models of nonthermal radio emission, such as solar radio bursts. A simulation study is carried out of electron acceleration for high Mach number, quasi-perpendicular shocks, typical of the shocks in the solar wind. Two dimensional self-consistent hybrid shock si...
متن کاملar X iv : a st ro - p h / 06 12 20 4 v 2 1 9 Fe b 20 07 Electron Injection at High Mach Number Quasi - Perpendicular Shocks : Surfing and Drift Acceleration
Electron injection process at high Mach number collisionless quasi-perpendicular shock waves is investigated by means of one-dimensional electromagnetic particle-in-cell simulations. We find that energetic electrons are generated through the following two steps: (1) electrons are accelerated nearly perpendicular to the local magnetic field by shock surfing acceleration at the leading edge of th...
متن کامل6 Electron Injection at High Mach Number Quasi - Perpendicular Shocks : Surfing and Drift Acceleration
Electron injection process at high Mach number collisionless quasi-perpendicular shock waves is investigated by means of one-dimensional electromagnetic particle-in-cell simulations. We find that energetic electrons are generated through the following two steps : (1) electrons are accelerated nearly perpendicular to the local magnetic field by shock surfing acceleration at the leading edge of t...
متن کامل